Lattice Polytopes in Algebra ,

نویسندگان

  • Christian Haase
  • Matthias Beck
  • Bruce Reznick
  • Michèle Vergne
  • Volkmar Welker
چکیده

[1] Victor V. Batyrev and Benjamin Nill. Multiples of lattice polytopes without interior lattice points. Moscow Mathematical Journal 7:195–207, 2007. [2] Victor V. Batyrev, Benjamin Nill. Combinatorial aspects of mirror symmetry. Contemporary Mathematics, 452:35–66, 2008. [3] Barbara Baumeister, Christian Haase, Benjamin Nill and Andreas Paffenholz. On permutation polytopes. Advances in Mathematics, to appear; arXiv:0709.1615. [4] Matthias Beck, Christian Haase and Asia R. Matthews. Dedekind-Carlitz polynomials as latticepoint enumerators in rational polyhedra. Mathematische Annalen 341:945–961, 2008. [5] Matthias Beck, Christian Haase and Steven V. Sam. Grid graphs, Gorenstein polytopes, and domino stackings. arXiv:0711.4151, eingereicht, 2007. [6] Matthias Beck, Christian Haase, Bruce Reznick, Michèle Vergne, Volkmar Welker and Ruriko Yoshida (editors). Integer points in polyhedra–geometry, number theory, algebra, optimization, statistics. Proceedings of the AMS-IMS-SIAM joint summer research conference, Snowbird, UT, USA, June 11–15, 2006. Contemporary Mathematics 452, 2008.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying 1-lattice Maximal Polytopes

In this senior thesis, we classify 1-Lattice Maximal Pyramids and Prisms up to unimodular transformation. 1-Lattice Maximal polytopes are important objects in convex geometry and nd applications in algebra and optimization. To do this, we de ne a canonical position for polytopes to limit the search area. We then analyze the base of the polytopes and determine which are too big to be the bases. ...

متن کامل

3-Dimensional Lattice Polytopes Without Interior Lattice Points

A theorem of Howe states that every 3-dimensional lattice polytope P whose only lattice points are its vertices, is a Cayley polytope, i.e. P is the convex hull of two lattice polygons with distance one. We want to generalize this result by classifying 3-dimensional lattice polytopes without interior lattice points. The main result will be, that they are up to finite many exceptions either Cayl...

متن کامل

CAYLEY DECOMPOSITIONS OF LATTICE POLYTOPES AND UPPER BOUNDS FOR h-POLYNOMIALS

We give an effective upper bound on the h-polynomial of a lattice polytope in terms of its degree and leading coefficient, confirming a conjecture of Batyrev. We deduce this bound as a consequence of a strong Cayley decomposition theorem which says, roughly speaking, that any lattice polytope with a large multiple that has no interior lattice points has a nontrivial decomposition as a Cayley su...

متن کامل

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

Boundary Complexes of Convex Polytopes Cannot Be Characterized Locally

It is well known that there is no local criterion to decide the linear readability of matroids or oriented matroids. We use the set-up of chirotopes or oriented matroids to derive a similar result in the context of convex polytopes. There is no local criterion to decide whether a combinatorial sphere is polytopal. The proof is based on a construction technique for rigid chirotopes. These corres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010